
Container, Hypervisor
and Realtime

The embedded world is currently undergoing
a great upheaval. Until a few years ago, it was
still common practice to develop the software
for a device as a large, proprietary monolith
and to avoid touching it after its introduc-
tion to the market. Thus, the device itself was
also functionally a monolith, which at most
exchanged data with others via a proprietary
protocol.

Today, completely different paradigms have
to be observed. IoT (or whatever you may call
it) has opened the doors, communication is
at the top of the priority list, development is
accelerating and industry has recognized the
value of open source software as a means of
finding solutions in this race.

In addition, hardware is becoming increasin-
gly powerful while costs are falling (the only
industry where this happens, by the way). This
means that multi-core CPUs, for example, are
now also ac-ceptable for the embedded world
in terms of the BOM. And so are large memo-
ries, standardized communication interfaces
(Ethernet) and whatever else exists in the IT
world. However, this new, powerful hardware
can only be used quickly and cost-efficiently
with open source software. It is no coincidence
that Linux has established itself so quickly in
the industrial environment. There is hard-
ly any other operating system that supports
such a large number of hardware platforms.

In addition to these changes to hardware
and software, the role of automation has also
changed in the course of cyber-physical sys-
tems. And while at the beginning everyone
thought that the only solution was large, ser-
ver-centric approaches (cloud), today it beco-
mes obvious that a viable way is to bring parts
of the IT world into the OT world. These ap-
proaches, known as edge and fog computing,
provide for real-time data (= data with low
latency, like control or sensor data) to be pro-
cessed on site. A type of data collection point,
which is the Edge or Fog computer, is then
located above the controller. There it receives

the (possibly pre-processed) data from the
sensors/controllers, processes the real-time
information and then transmits the aggre-
gated information to the server farms in the
cloud. Due to the advances made by hardware
manufacturers, Edge computers have now the
capacity to run applications that previously
were running on servers on site. Consequently
the programming approaches of the IT world
are entering the embedded world. Now they
have to deal with virtual machines (VM) and
their management software (Virtual Machi-
ne Manager, VMM, also called hypervisor) or
containers and assess what is likely to be the
better solution. However, specific embedded
requirements such as real-time must still be
taken into account and fulfilled.

But what actually is a virtual
machine and what is a contai-
ner?

The issue of virtualization was already dis-
cussed at a surprisingly early stage: It all star-
ted more than 50 years ago, when IBM step-
ped into the first research on virtual machines
on an IBM 360 mainframe computer. In order
to manage the virtual machines on the 360,
the Virtual Machine Manager, also called hy-
pervisor, was introduced. The virtual machines
pretended to the applica-tion and the opera-
ting system they were pieces of hardware, but
they weren’t. In fact they were generated by a
software on the mainframe only virtually.

Popek and Goldberg[1] presented a study in
1974, its classification of a hypervisor is still
valid to-day.

In virtualization, all resources required by a
system are provided by the hypervisor. Non-
existent hardware or even just access to a
hardware from the virtual machine is simula-
ted by software. This process is called emulati-
on. A process that consumes resources and is
far less powerful than real hardware.

2

To avoid this loss of performance, paravirtu-
alization has been introduced. The operating
system is not allowed to presume that it had
all the hardware for itself. In practice, this me-
ans that there is a software interface in the hy-
pervisor that is able to allow the guest system
direct (physical) access to the resources of the
physical system. The guest system must have
its own drive rs, which communicate with the
hypervisor and skip the emulator.

A virtual machine always is a package of ope-
rating system and application code that runs
in the virtual environment, i.e. in user space.
Using an emulator you can even pretend
hardware architecture different from what is
physically available, to the package.

In contrast, the container approach needs no
virtual machine, nor the pretending of having
its own hardware or its own operating system.
The operating system is identical for all contai-
ners, all containers share the same hardware.
The individual containers are separated using
special operating system functions (under Li-
nux, for example, CGROUPS and namespaces).
This keeps the containers slim, which means
that they do not require much additional code
for their real task. Within one container there
is the application (in many cases only a single,
small application) with its required libs and

frameworks. The use of containers decouples
an application from the infrastructure and
thus offers a portability that is expected today
in terms of cloud-centred approaches.

The actual application is divided into many
small applications, each gets its own contai-
ner, and together these so-called microser-
vices provide the desired solution. This is sup-
porting the DevOps approach, the creation
and use of containers is simplified by standar-
dization such as Docker and the interaction of
different containers can be automated using
orchestration frameworks such as Kubernetes.

IT and OR

Containers and VM were created in the IT world
to solve the requirements there. By using VM it
became possible to run more than one appli-
cation per computer/server. And as an applica-
tion in a single, large monolithic block turned
into a collection of small applications, the use
and utility of container technology increased.

The question now is whether these technolo-
gies can also be used in the embedded envi-
ronment with its special requirements and if
so, whether they can offer an advantage. Let‘s
start with the VMs:

Considering that virtual machines were born on
mainframes and then grew up on special server
architectures, it can be doubted whether they fit
into the OR area. However, the major CPU ma-
nufacturers such as Intel, AMD and ARM have
provided birth assistance for the embedded sec-
tor: They started to extend their processors with
special functions for virtualization around 2005.
The technology has now entered the low-cost
CPUs that are applied in the OR area.

By combining these new CPUs with a suita-
ble hypervisor the specific requirements of
automation can be covered, too. One of the

most important technical re-
quirements for a control system
is real-time capability. From an
economical, cost saving point
of view, you would like to see as
much functionality as possible
on one computer. Consolidation
is the resulting requirement, i.e.
the combining of previously se-
parate functions of several hard-
ware components in just one
hardware. Please, just do so, but
retain the software that already
exists.

A hypervisor like jailhouse is the
absolutely right approach for this.
An open source solution runs on

different architectures, has a minimum foot-
print of < 10 000 lines of code and allows the
use of different operating systems as well as
bare metal code in the guest system. Jailhouse
allows applications to be separated without
losing real-time capability. The additional over-
head caused by jail-house in an RT system is
in the range of 2 - 10 µsec, depending on the
hardware used. This allows hard real-time re-
quirements to be met even in the guest system.

The separation allows, for example, both the
graphical control unit and a certified code to
run on the same CPU but in different VMs.
While the GUI and its underlying operating

Container

Core 1 Core 2 Core 3 Core n+1Core n

Hardware

C Groups Namespace

Container Management

Host OS

 App A
Libraries

Middleware
Language

 App …
Libraries

Middleware
Language

 App C
Libraries

Middleware
Language

 App B
Libraries

Middleware
Language

© Linutronix GmbH 2018

 Fig. 1: Container

3

system communicate with the world and, for
security reasons, regularly receive an update,
the certified application remains in its VM,
without update and without external influ-
ence. And the time-critical control runs as a
bare metal application on a different core. A
classical case of consolidation. The embedded
world is ready for virtualization!

And what about the container approach?
When Docker, an open source platform for
container management, saw the light of day
around 2014, a hype began, the end of which
is not yet in sight. And which has also reached
Embedded World. Two changing developments
have complemented each other here - the tri-
umphant advance of (real-time) Linux and
the container as an (apparent) answer to the
question of how applications can simply be
brought to the fragmented world of Linux on
as large a number of distributions as possible.
In the course of IIoT (also called Industry 4.0),
the use of Open Source solutions has been ac-
cepted in various areas.

Even manufacturers of closed control solu-
tions (keyword: PLC) had to learn in the me-
antime that third party software must be al-
lowed to run on their computers. Otherwise
there is a risk of customer migration. So Linux
is getting employed as the operation system,
The PLC runs as a soft PLC (as before) and the
„foreign“ software runs in the container, se-
cured against the controller. A symbiotic ap-
proach that leaves happy participants behind
and makes the previously closed solutions fit
for industry 4.0 and its requirements.

 There is still the question of what is the „right“
container. And that‘s not easy to answer. Every-
one is talking about Docker, but also the im-
plicit Linux tools like LXC are competing, and

then there are complete distributions like
Snap-OS, which jump on this topic. There is
not the one answer to this question. What the-
se approaches have in common is, for examp-
le, their real-time capability. This feature is pri-
marily a consequence of the operating system
used, but is also available to any func-tion in a
container without restriction. And the indivi-

dual applications can be separated from each
other to a certain extent. However, it is still
possible to influence the operating system. A
certified application software can therefore be
excluded from the update, since it is constant-
ly being installed in a container. An update of
the OS, however, could affect the application.

So what is the right solution?

There is no clear answer to this question. It
depends, as is quite normal in life, on the cir-
cumstances. Let‘s take a look at the differen-
ces between the various approaches.

Container versus VM
Docker is a container-based technology, and
containers represent only the user space of
the oper-ating system. Under the hood???,
containers are only processes that are isola-
ted from the rest of the system. They are run
by a specific image that contains all the files
needed to support the pro-cesses.

Docker is designed to run applications while
containers running in Docker are sharing the
host OS kernel. In contrast, virtual machines
are not based on containers, but are built from
the user space plus kernel space of an opera-
ting system. Under VMs, the server hardware
is virtualized. Each VM has an operating sys-
tem and applications, and it shares hardware
resources from the host.

Jailhouse - HW and SW consolidation

Core 1 Core 2 Core 3

Device 1 Device 2

Core n

Device n

Core n+1

Device n+1

Linux

Root
 Cell

Bare
Metal

App

 Cell n

New
RTOS

New
App

 Cell n+2

Guest
Linux

App

 Cell 1

Jailhouse Hypervisor

Legacy
OS

Legacy
App

 Cell n+1

Core n+2

Device n+2

© Linutronix GmbH 2018

 Fig. 2: consolidation with jailhouse

Both VMs and dockers have their specific ad-
vantages and disadvantages. In a VM envi-
ronment, each workload requires a complete
OS – in a container environment, multiple
workloads run in one OS. The larger the OS
footprint, the better container environments
pay off (as far as only resource consumption
is taken into account). In addition, containers
offer additional benefits such as reduced IT
management costs, smaller snapshots, faster
application startups, reduced and simplified
security updates, and less code for transfer-
ring, migrating and loading workloads. Sim-
plified security update means that only the
underlying OS needs its patches.

The containers are more or less shielded from
each other. But by far not as separated and
thus secured as a guest OS in a hypervisor sys-
tem. And their data integrity is largely based
on the OS used.

Both, a guest OS as well as the containers, al-
low third party programs to be executed wit-
hout compromising the security of the entire
system. In addition to the actual application,
a container only contains those components
that are still needed by the application soft-
ware, such as libraries, and so on. And a con-
tainer can easily be supplemented by further
functionalities such as debug tools, etc. So, for
example, you can deliver a significantly exten-
ded range of functions for the test phase com-
pared to the subsequent production phase.
This can be done without great effort on the
part of the creator. A virtualized guest OS can
do the same, but the application must always
be exactly matched to the guest OS and its
components, or vice versa. To put it simply, the
guest OS plus application makes more soft-
ware than a container.

In the IT world, the portability and scalability of
applications is of crucial importance. Here, for
example, applications are scaled across many
servers. Containers support this scalability by
design. This dynamic scalability is not part of
the OT world. There a certain number of re-
sources are available, which does not change
dynamically according to the load. Even with
on-premise clouds (also called edge or fog so-
lutions) the application is limited to the local
resources. That advantage of container tech-
nology is not required in the OT world.

Systems with certified software need to be
looked at separately. We are not talking here
about safety-certified systems. Rather about

systems which, for example, measure a speci-
fic physical quantity and are approved by a cer-
tification body such as PTB (Physikalisch-tech-
nische Bundesanstalt Braunschweig). If such
a system is connected to the Internet in the
course of Industry 4.0, for example, the topic of
updates becomes urgent the same moment.
At any rate the system adopted must not be
changed. But how can you update the rest of
the system without compromising certifica-
tion? With a little goodwill on the part of the
certification body and an accordingly additio-
nal software effort, this may be possible with
containers (the author knows of appropriate
solutions). However, the solution is simpler
and cleaner with one virtual machine, where-
by the measuring software runs in its own VM
and the „rest“, i.e. the communication part, in
another. The architecture itself ensures that
an update only affects those non-certified sys-
tem parts which may or need to be changed.

Whether the plus of software and data integ-
rity on the VM side outweighs the leaner soft-
ware volume and the reduced data integrity
on the container side or not, must be decided
in the context of the application (e.g. conso-
lidation of legacy code) and the customer re-
quirements (e.g. certification or maintainabi-
lity). Anyway, it is an obvious fact that new IT
technologies are being used more and more
quickly even in the OT world. The OT area can
no longer afford its isolated solutions like in
the past, because customers would no longer
accept and neither pay for it.

Are you interested? Would you like to learn
more about our products and solutions?
Simply contact us via telephone or email.

L I N UT RO N I X G M B H
Bahnhofstr. 3 | D-88690 Uhldingen - Mühlhofen
Telefon +49 7556 25 999 0 | Fax +49 7556 25 999 99
sales@linutronix.de | www.linutronix.de

01
/2

01
9_

V1
.1

