
It is really time to celebrate!
25th anniversary of RTLWS

20th anniversary of Preempt-RT

Time advances with a constant pace, but it passes quickly.

In 1999, the first Real-Time Linux Workshop (RTLWS) took place
in Vienna. In 2004, the Linux Real-Time debate unfolded on the
Linux kernel mailing list, which marks the start of the Preempt-RT
project.

These anniversaries are definitely worth coming together to
commemorate. They also provide a worthwhile opportunity to take
a look back on 25 years of history. This anniversary publication is
intended to provide insight into the history of Linux Real-Time and
to honor the people who were involved and have contributed to
this effort. We hope you will enjoy this journey down the memory
lane.

Uhldingen-Mühlhofen, September 2024

Thomas Gleixner and Heinz Egger

Table of contents

Looking back at the evolution of Linux Real-Time		� 1

Important steps of Preempt-RT		� 18

Retrospectives � 29

Real-Time quotes 		� 37

The RTLWS archives � 41

Obituaries		� 47

About Linutronix		� 51

Imprint		� 53

Trademark information

Linux is the registered trademark of Linus Torvalds in the U.S.
and other countries.

UNIX is a registered trademark of The Open Group.

WINDOWS is a registered trademark of Microsoft Corporation.

Other products mentioned may be trademarks of their
respective corporations.

1

Looking back at the evolution of
Linux Real-Time

Commemorating the 25th anniversary of the first Real-Time Linux
Workshop (RTLWS) and the 20th anniversary of the Linux
Real-Time preemption patch (Preempt-RT) provides a worthwhile
opportunity to look back on the history of Linux Real-Time.

What is Real-Time?

The ISO 2382 standard defines ”Real-Time” as the capability of a sys-
tem to respond to inputs or events within a specified time frame,
known as the deadline. The standard distinguishes between Hard
and Soft Real-Time systems. Hard Real-Time systems must guar-
antee deterministic behavior, where a violation of the deadline is
considered a catastrophic failure. Soft Real-Time systems can
violate the deadline guarantees occasionally, however the system
has to be designed to handle violations gracefully without causing
fatal consequences.

Hard Real-Time systems are used in control systems, avionics, au-
tomotive and other areas including in the context of functional
safety. For functional safety deployments, Hard Real-Time systems
have to be designed carefully and under certain circumstances,
the correctness has to be verified against a formal model of the
system.

General purpose and Real-Time operating systems

A General Purpose Operating System (GPOS) is designed to han-
dle a wide range of applications, primarily optimized for through-
put and compute performance. However, it does not provide guar-
antees for response time to inputs or events. GPOSes are feature
rich and not targeted to a specific application space.

Contrary to that, Real-Time Operating Systems (RTOS) are designed
for use cases which require deterministic response times. They
are used in control systems and other areas, where deterministic
behavior is a critical part of the overall system design requirements.
A RTOS is typically tailored to the requirements of the application
and contains only the minimum set of required features.

Historically, RTOSes were implemented for specific microcon-
trollers, while broader computing tasks were offloaded to a GPOS
on a separate processor system. This has the advantage that for-
mal verification is restricted to the RTOS part, but it severely limits
the ability of communication and data exchange between the
Real-Time and non Real-Time parts. In certain application areas,
e.g. automotive, this led to an aggregation of a large number of
individual nodes connected through Real-Time aware commu-
nication buses, which significantly increased the complexity of
assessing the overall system behavior for correctness.

With the availability of powerful commodity processors for general
computing, the industry looked for ways to consolidate such set-
ups so that Real-Time and general compute tasks can be handled
by the same processor. While this makes overall system validation
more complex, it allows the implementation of more resource
demanding Real-Time applications and removes the restrictions
on communication and data exchange. Aside from this consol-
idation potential, the increasing connectivity of Real-Time sys-
tems adds security requirements, which are more advanced in
GPOSes than in RTOS implementations.

2

Linux - the early days

On August 25th, 1991, Linus Torvalds announced that he was work-
ing on a free operating system for 386 (486) AT clones as a hobby
project. The famous postscript of the email said:

It is NOT portable (uses 386 task switching etc),
and it probably never will support anything other than
AT-harddisks, as that‘s all I have :-(.

Neither Torvalds nor any participant on the comp.os.minix Usenet
newsgroup could have anticipated that Linux would grow into
one of the most successful and influential software projects, sup-
porting more architectures than any other operating system.

Early Linux Real-Time research

The rapidly growing popularity of Linux in general computing got the
embedded industry interested, but the lack of Real-Time capabili-
ties was holding adoption off.

Linux gained traction in the academic space because it was easily
accessible, free of cost, and less complex than the BSD variants.
This allowed Real-Time researchers to utilize Linux as the base for
their research and experiments. This also lifted research restric-
tions as commercial RTOSes were hard to access and often put
strict limitations on the ability to publish data. Starting in the late
1990’s, a plethora of research projects were published and code
was put into publicly accessible repositories. The researchers
took two different approaches, Dual-Kernel and In-Kernel.

The Dual-Kernel approach uses a Nano- or Micro-Kernel as the
RTOS kernel which runs Linux in its idle task. A similar approach
has been used before to provide Real-Time extensions for MS-DOS,
WINDOWS and UNIX variants and is still in use for commercial
WINDOWS Real-Time extensions as of today. The Dual-Kernel

3

approach requires only minimal changes to the Linux kernel and
and the Nano- or Micro-Kernel RTOS implementation is relatively
straightforward.

The In-Kernel approach modifies the Linux kernel itself to provide
Real-Time capabilities. Because the Linux kernel was not original-
ly designed with Real-Time functionality in mind, it would require
an enormous effort to achieve this. Determinism, being a system
property, imposes restrictions and requirements on nearly every
aspect of an operating system’s functionality.

Nano- or Micro-Kernels can be formally verified as an isolated enti-
ty. However, ensuring that the Linux GPOS kernel, which runs with
the RTOS kernel on the same processor system, cannot violate the
correctness requirement of the RTOS kernel is a significant challenge.

Dual-Kernel systems provide a separate Application Program-
ming Interface (API) for the Real-Time tasks and require special-
ized mechanisms to communicate and synchronize with the non
Real-Time applications which run on the Linux kernel. Some of
these approaches required the Real-Time application to be load-
ed as a kernel module, which not only caused licensing concerns,
but also put severe limits on debuggability and the use of run-time
analysis tools.

In-Kernel systems provide a uniform API for Real-Time and non
Real-Time applications. However, there is a caveat: Real-Time ap-
plications have to carefully choose which system services to use,
as many of them are non-deterministic. This restriction is similar
to the restricted Real-Time API functionality in RTOSes and Dual-
Kernels. Despite this, Real-Time applications can be debugged and
exposed to run-time analysis tools just like any other application.

The well known and influential research projects from this time
are RTLinux, RTAI, L4Linux, KURT and Linux/RK. RTLinux, RTAI and

4

L4Linux use the Dual-Kernel approach. KURT and Linux/RK aimed
for In-Kernel Real-Time.

The debate between proponents of the Dual-Kernel and the
In-Kernel approaches, which started in the 1990s, continues
today and may never be fully resolved. In many aspects, it is like
the well-known Micro-Kernel versus Monolithic Kernel debate,
which unfolded 1992 between Prof. Andrew Tannenbaum and
Linus Torvalds.

The early Linux Real-Time community

The first project, RTLinux, initially gained some traction in the
open-source world. However, interest remained limited to a small
group of enthusiasts due to the licensing restrictions that required
applications to be licensed under GPL version 2.

Subsequently, RTAI attracted a wider community because, initially, it
appeared to be free of patent encumbrances. This assumption, how-
ever, later turned out to be problematic. Though this situation was
remedied by Xenomai, the adoption of RTAI stayed rather limited.

Neither the KURT nor the Linux/RK project succeeded in attracting
an open source community around them due to the initial
popularity of RTLinux and RTAI, which provided a more complete
solution. However these projects had significant influence on the
Linux kernel community based Real-Time efforts, as they success-
fully demonstrated the general viability of the In-Kernel approach.

These projects operated independently from the Linux kernel
development, and none of them prioritized merging their changes
into the mainline kernel. In 1999, Peter Wurmsdobler and Nicholas
McGuire organized the first Real-Time Linux Workshop (RTLWS)
in Vienna to bring together academics, open source developers,
and industry engineers. This initial workshop inspired passionate

5

academic debates between the Dual-Kernel and In-Kernel pro-
ponents, while open source developers and industry representa-
tives attempted to make sense of the discussions.

For many years, RTLWS was the premier Linux Real-Time confer-
ence, hosting 18 events. By 2006, the growing participation and
interest from the Linux kernel community developers justified
starting a dedicated kernel developer track, which was first intro-
duced at the 2009 Dresden conference. This milestone laid the
ground for ongoing, successful collaboration between the aca-
demic and Linux kernel communities, a partnership that continues
to thrive. In 2018, RTLWS transformed into Real-Time tracks at
the Embedded Linux Conference (ELC) and the Linux Plumbers
Conference (LPC).

The start of Preempt-RT

In 2002, the Linux kernel community started to improve
the responsiveness of the Linux kernel by introducing explicit
preemption points. This allowed breaking up potentially long run-
ning sections of kernel code which caused large latencies. The
user visible effect of this work was enhanced responsiveness of the
Linux desktop. For server applications, this change reduced
sporadic latencies, especially in network intensive workloads.

Various embedded Linux vendors tried to leverage these changes
to provide basic Soft Real-Time capabilities to their customers. The
changes were not sufficient for their customers‘ needs, so devel-
opers working for those vendors implemented improvements to
address particular customer specific issues. Then, in September
2004, several developers working for those vendors posted patch-
es with their changes. Since these changes were primarily devel-
oped to address specific needs, none offered a comprehensive
Real-Time solution. This led to one of the largest email threads on
the Linux kernel mailing list, highlighting the lack of community

6

consensus on the general approach to putting an In-Kernel solu-
tion in the Linux kernel upstream. Developers from Dual-Kernel
projects argued that these changes were unnecessary because
they already had a ready-to-use solution. This view was generally
not well received by the kernel developers, whose priority was
to improve the kernel itself. Unfortunately, parts of the email
discussion derailed into futile arguments over minor differences
measured in single digit microseconds.

Ingo Molnar, who was at the time the maintainer of the Linux kernel
scheduler and involved in the low latency efforts, picked up some
of the patches, or rewrote them from scratch. He combined them
into a consistent set of patches aimed at achieving full In-Kernel
Real-Time support. With this starting point, a small team of core
developers was formed. Thomas Gleixner, who had worked with
the late Douglas Niehaus on KURT/LibeRTOS, brought in technolo-
gy from these efforts. Steven Rostedt, who was familiar with the
Linux/RK work, brought in expertise and ideas. Various other devel‑
opers joined the effort and helped to create the first usable
Linux kernel community Real-Time prototype. This effort is since
known as the ”Linux Real-Time preemption patch“, or more succinct‑
ly, ”Preempt-RT“, named after the related kernel configuration option.

From the very beginning, this group of developers aimed to inte-
grate the Real-Time work into the upstream kernel. At the Linux
Kernel Summit 2005 in Ottawa, the general approach of inte-
grating Real-Time into the upstream kernel was discussed. Most
developers agreed with the approach, with the stipulation that
it did not disrupt existing work and create roadblocks for future
development.

Aside from the Dual-Kernel proponents claiming that this was
”mission impossible”, the scope of the undertaking was not clearly
defined at that point. In 2004, Ingo Molnar phrased it this way:

7

Are you sure that you want to touch every single file in the 		
kernel while working at this for the next 10 years?

His question was considered hyperbolic at the time, but it turned out
to be close to reality. In fact, no one was able to accurately estimate
what it would ultimately take to convert the initial prototype into a
maintainable solution which could be integrated into the upstream
Linux kernel.

Aside from the undefined scope, there were no answers on how
to solve the technical challenges. Solutions needed to be found that
would not conflict with the performance and throughput goals of
the Linux kernel community and keep pace with the ever changing
code base of the Linux kernel. Moreover, no one had any idea how
many unknown technical problems would be unearthed over time.

Twenty years of work

During the first five years, a substantial part of the Real-Time
work found its way into the Linux kernel. Aside from generalization
efforts to reduce redundancy in CPU architecture specific
implementations, significant infrastructure work was contributed
and accepted.

All of this work was required to make Preempt-RT feasible, but
none of it was truly Preempt-RT specific. Generalizing code, adding
infrastructure which helps to improve correctness, debuggability
and maintainability, and adding features which are useful outside
of the Real-Time realm has improved the quality and usefulness of
the Linux kernel for everyone.

This period has a long list of achievements. Generic timekeeping,
generic and threaded interrupt handling, high resolution timers,
the mutex infrastructure, priority inheritance for user space mu-
texes, preemptible and hierarchical RCU, the tracing infrastructure,

8

the lock dependency validator, and several other advancements
emerged from this effort.

After that period, the number of active developers decreased sig-
nificantly, which caused the project to go mostly into maintenance
mode and to keep it up to date. The required work to upstream the
remaining pieces was too large to be handled by a few people with
limited funding. In 2015, the funding situation was remedied and
the upstream efforts resumed.

The Real-Time team at Linutronix focused on major refactoring
tasks, which primarily improved the quality and stability of the
upstream Linux kernel code base, but at the same time, laid
the ground to integrate the Real-Time mechanisms smoothly.
Gleixner and his team thereby strictly followed the advice from
Linus Torvalds:

In other words, every new crazy feature should be hidden in 	
a nice solid ”Trojan Horse“ gift: something that looks _obviously_
good at first sight.

This effort reduced the size of the Preempt-RT patch set signifi-
cantly and led to the more interesting and hard to solve Real-Time
specific problems. While the scope of these problems were more
localized than the already merged refactoring work, the remain-
ing pieces were more difficult to integrate cleanly. They were also
harder to justify for merging into the upstream kernel as they
couldn‘t be hidden in a ”Trojan Horse” gift anymore.

While most of the technical challenges could be addressed within
the projected timelines, one surprising holdout kept the team under
suspension for many years: printk.

printk is an infrastructure, which provides the kernel with the abili-
ty to emit informal and emergency messages on the consoles. The
printk implementation in the kernel rooted back to Linux version

9

1.0 and its design never significantly changed, while developers
tried to address its short-comings with creative workarounds for
almost two decades.

While the informal part is trivial and non-critical, emergency mes-
sages expose an abundant heap of hard to solve technical challeng-
es. These messages are emitted when the kernel encounters a bug
or one of the runtime debug mechanisms detects a critical state.
The contexts in which these messages can be emitted are com-
pletely arbitrary and include nesting into already ongoing output
operations. As these messages are crucial for problem analysis, it is
important to ensure that they reach the console output.

Addressing this required another round of large scale refactoring
work. Handling the critical context requirements resulted in going
back and forth between implementation and the drawing board
several times. At LPC 2023, the latest approach was demonstrated
and discussed with the kernel developers. Aside from implemen-
tation details, this solution is holding up so far and is on the way to
being merged into the mainline kernel. Once this is completed, the
configuration switch to select Preempt-RT in the mainline kernel
can be enabled for the supported architectures.

How Real-Time is Preempt-RT really?

While Preempt-RT is demonstrably more advanced than Soft
Real-Time, it lacks the formal proof to be correct under all
circumstances. For many systems which do not require formal
verification, the statistical proof of correct behavior is sufficient.
With careful system design and tuning Preempt-RT is able to
satisfy the requirements of the majority of Real-Time application
requirements.

The lack of formal verification has been brought up against
Preempt-RT for a long time, especially in the context of functional

10

safety. For those keeping track, the Dual-Kernel approaches are not
truly verifi able either due to the fact that the two kernels share
the same address space and malfunction of the GPOS kernel can
defi nitely cause disruption of the RTOS. The In-Kernel approach
suffers from the same problem. Additionally the temporal non-
interference of all parts of the kernel would have to be verifi ed.

As the In-Kernel approach of Preempt-RT has many advan-
tages over a Dual-Kernel implementation and the verifi cation of
the combined Dual-Kernel is non-trivial, the industry started to
research the feasibility of certifying Linux based systems on
multicore CPUs.

The industrial research project SIL2LinuxMP was started in 2015
with the goal to determine whether it is possible to build complex
software-intensive safety-related systems using the Linux operat-
ing system and Preempt-RT as its foundation. This research ap-
proached the safety requirements by leaving the well established

Comparison between RT and Non-RT kernel

11

route of compliant development and moving from a development
to a controlled selection and analytical process. The project did
not achieve a full safety argumentation, but laid the foundation
for its successor ELISA (Enabling Linux In Safety-Critical Applica-
tion). ELISA is a collaborative project under the umbrella of the
Linux Foundation.

Both SIL2LinuxMP and ELISA have resulted in novel analysis tools,
which are not only useful in the context of functional safety, but
also for the general proof of correctness of the Linux kernel, which
is a welcome contribution to further stabilize the code base for
everyone.

Like the developers of Preempt-RT the safety community has gone
off the beaten track and explored innovative concepts to solve
these challenges. One outstanding approach worth mentioning is
the Runtime Verification tool developed by the late Daniel Bristot
de Oliveira.

Bristot turned the classic fine-grained model checking and theo-
rem proving approach at instruction level into a method to validate
the runtime behavior of a system against a formal specification of
the expected system behavior. This approach is formally verifiable
and can be applied to complex systems without requiring the Her-
culean task of re-implementing the complete system in a formal
modeling language.

Whether Preempt-RT can be certified on its own is still an open
question, but the efforts from these projects have brought more
stability and boosted the confidence in the general correctness of
the system.

Aside from that, the lack of verification does not preclude Linux/
Preempt-RT from being used in mission critical systems. Careful
overall system design, redundancy and diversity concepts make
this possible. This is not a new and Preempt-RT specific approach.

12

Mission critical systems based on a combination of WINDOWS 95
and Linux 2.2 have been designed, certified and deployed in the
late 1990s already.

Linux/Preempt-RT in the real world

Linux/Preempt-RT has been successfully deployed for more than a
decade in a broad range of application spaces including telecom-
munications, medical devices, data acquisition, industrial automa-
tion, robotics, automotive, aerospace and satellite technologies. It
is part of the offerings of many community and enterprise distri-
butions and supported by most of the embedded Linux vendors.

The main reasons for the wide adoption are the broad hardware
support, scalability, security and the seamless integration into the
larger Linux ecosystem.

What‘s next?

One might assume that after enabling support for Preempt-
RT in the mainline Linux kernel, the Real-Time challenge is over,
but in reality there are still a lot of problems to be solved. The con-
stant influx of new technologies and the ever increasing chase for
performance and scalability optimizations in the Linux kernel will
provide a source for new challenging problems to be solved for a
very long time.

One outstanding problem to mention is in debate since 2009. At the
RTLWS 2009, the late Doug Niehaus presented a novel concept to
replace the well understood priority inheritance mechanism with
a new concept of Proxy Execution. This solves the long standing
practical and theoretical problem that priority inheritance applied
to deadline and bandwidth scheduling policies does not work cor-
rectly and can lead to unbound latencies.

13

The proposed mechanism seems straightforward at first sight and
can be readily implemented for single processor systems, but the
reality of multiprocessor systems makes it a hard to solve puzzle.
Several attempts to implement it failed over the years and it is still
being worked on, but the most recent efforts look promising.

Linux/Preempt-RT in numbers

During the 20 years of development, about 10,000 patches related
to Preempt-RT, which originated with the developers who were
involved in the project over time, have been merged upstream.
Some of the refactoring and generalization work resulted in fol-
low up changes done by other developers who converted architec-
tures or drivers to more modern interfaces. These direct secondary
effects are hard to quantify. A rough estimate based on commit
subjects puts them into the range of 5,000, but that number has
to be taken with a grain of salt.

The largest efforts directly attributed to the project were the re‑
factoring of CPU hotplug code, the removal of the Big Kernel
Lock (BKL) and new infrastructures in the areas of timers,
scheduling and locking.

The number of changes are taken from the upstream kernel Git
history and therefore do not reflect the actual number of patch-
es which were submitted to the mailing lists, nor the number of
patches which were initially developed in the context of the pro-
ject. Many of the topics have gone through several iterations in the
Preempt-RT patch set before they were submitted for inclusion
into the mainline kernel. They also do not take the number of sub-
sequent developments into account, for it is not necessarily related
to Real-Time. To put this into perspective, the RT-Mutex infrastruc-
ture was rewritten about five times in the early days of Preempt-
RT before an attempt to include it upstream was made. The vari-
ous attempts to solve the printk problem have accumulated easily

14

into more than 1,000 patches written over the course of six years.
Most of the work has been done in the beginning by a core team of
about ten developers. The final upstreaming effort was mostly
handled by a smaller team of up to five developers with the help
of the larger community. Of course this would not have been pos-
sible without the help of many other contributors. The effort to re-
move the BKL involved~80 developers, though only a few of them
were engaged with or interested in Real-Time. Due to the blurry
history of the out of tree patches, it’s almost impossible to quantify
the number of contributors correctly. From the inspection of mail
archives, it is approximately 150 to 200.

Impact on the Linux kernel

The Preempt-RT project resulted in presumably the largest refactor-
ing effort in the history of the Linux kernel touching a broad range of
kernel subsystems. The Real-Time mechanisms required far stricter
semantics than those originally provided by the Linux kernel. In the
early days, some developers raised concerns that the introduction
and enforcement of stricter semantics would restrict their freedom
and creativity. While it is true that stricter semantics prevent some
creative shortcuts, the benefits of enforcement, aided by run-time
analysis tools, did not have a negative impact on the further evo-
lution of the kernel. Quite the contrary, the enforcement allowed
developers to validate their approaches for correctness, which
resulted in a net increase of stability.

Linus Torvalds acknowledged this benefit in 2010:

But on the whole, I think it‘s actually worked out pretty well
for them. I think the mainline kernel has improved in the
process, but I also suspect that_their_RT patches have also
improved thanks to having to make the work more palat‑
able to people like me who don‘t care all that deeply
about their particular flavor of crazy.

15

Due to that process, nearly all implementation details of the
Real-Time changes have evolved from ad-hoc workarounds to well-
defined mechanisms. Many of them provide analysis benefits even
when Preempt-RT is disabled.

Compared to twenty years ago, the size of the kernel grew from
4.2 million to 28.1 million lines of code. The vast majority of the
growth is in drivers. In the early days of Preempt-RT, drivers were
especially problematic for Real-Time. Most of these problems
were hidden for a long time due to the lack of enforced seman-
tics, tooling, clear interfaces and abstractions at the time when
these drivers were implemented. These bugs were hard to trigger
and not reproducible, which made them either silent errors or hard
to analyze. The Real-Time modifications exposed such issues re‑
liably, so the Real-Time developers spent a lot of time analyzing
and addressing them.

The continuous improvement of abstractions and tooling im-
proved the quality and stability significantly and the majority of
drivers today work correctly on Real-Time enabled systems out of
the box.

This is not solely an achievement of the Real-Time efforts. During
the last twenty years, tooling, compilers, static code analysers and
run-time validation mechanisms have improved significantly. Con-
solidation in driver subsystems and other areas of the kernel have
contributed to this as well.

Educational efforts

The early concerns regarding restricting freedom and creativity
had a surprising longevity. A long trail of discussions around the
tradeoffs between enforced correctness, which aids stability, and
the permanent quest to prioritize new features and performance
can be found in the Linux kernel mailing list archives. Despite

16

the vast amount of publicly accessible information, this discussion
seems to continue forever. But that’s not only a Real-Time spe-
cific problem. In 2013 Dave Chinner, the XFS file system maintainer,
said:

I‘ve just given up trying to convince people to use the
generic code when they are set on micro-optimising code.
The ”I can trim 3 instructions from every increment and
decrement“ argument seems to win every time over ”we
know the generic counters work“....

Seven years later, the approach of tooling enforced correctness was
put into question by developers of a new subsystem. They tried to
hand wave away the restrictions to instrument code which is de facto
not instrumentable for technical reasons. Thomas Gleixner’s answer
to this was:

If we can have technical means to prevent the wreckage,
then not using them for handwaving reasons is just violating
the only sane engineering principle:

 Correctness first

I spent the last 20 years mopping up the violations of this
principle. We have to stop the ”features first, performance first“
and ”good enough“ mentality if we want to master the ever
increasing complexity of hardware and software in the long
run. From my experience of cleaning up stuff, I can tell you,
that correctness first neither hurts performance nor does it
prevent features, except those which are wrong to begin with.

Is ”Mission Impossible” really impossible?

Retrofitting the Linux kernel with Real-Time capabilities was con-
sidered impossible for various reasons. Aside from the theoretical
concerns about the general concept, which will be discussed later,
the main obstacles were:

17

Important steps of Preempt-RT

Linux v0.1 - SLOC 9.84k
fs
include
kernel
lib
mm

Linux v2.0.0 - SLOC 513.44k
arch
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net

Linux v1.3.0 - SLOC 226.34k
arch
drivers
fs
include
init
ipc
kernel
lib
mm
net

Linux v2.2.0 - SLOC 1.22M
arch
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net

Linux v2.4.0 - SLOC 2.21M
arch
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net

Linux v2.6.11 - SLOC 4.34M
arch
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound

Linux v2.6.21 - SLOC 5.42M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound

Linux v2.6.32 - SLOC 8.12M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

Linux v2.3.0 - SLOC 1.29M
arch
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net

Linux v2.6.9 - SLOC 4.23M
arch
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound

Linux v2.6.16 - SLOC 4.93M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound

Linux v2.6.27 - SLOC 6.28M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

Linux v2.6.37 - SLOC 9.43M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

1991
Linux 0.01

RTLinux
New Mexico Tech

Linux/RK
Carnegie Mellon

XENOMAI Generic Interrupt
subsystem

Generic timekeeping
High resolution timers
Tickless idle

Preemtible RCU
Threaded interrupts
Raw Spinlocks

1999
RTAI -
Politecnico di Milano
1st RTLWS in Vienna

2004
The Realtime debate on
LKML First release of
Preempt-RT

2006
RT-Mutexes, Priority
Inheritance, PI-Futex,
Mutexes, Lockdep
First production ready
Preempt-RT release

2008
Tracing

2010
RT maintenance mode

1997
KURT - Kansas University

1996 1998 2001 2005 2007 2009

Linux v3.0 - SLOC 9.93M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

Linux v4.14 - SLOC 17.34M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

Linux v3.18 - SLOC 12.96M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

Linux v4.4 - SLOC 14.32M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

Linux v4.9 - SLOC 15.28M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

Linux v4.19 - SLOC 17.78M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

The fi nal Big Kernel
Lock removal

RT maintenance mode CPU hotplug rework

2014
RT hobbyist project

2016
LF Realtime Linux project
Timer wheel rework

2018
Treewide cleanup of
locking constructs

2011 2015 2017

Linux v5.4 - SLOC 19.34M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

Linux v5.15 - SLOC 22.46M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

Linux v6.6 - SLOC 26.37M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

Linux v6.11-rc4 - SLOC 28.02M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

FPU, stacktrace, timers
support for RT
Introduction of
CONFIG_PREEMPT_RT

2019

First batch of printk()
related work
RT locking primitives

Further printk() work
Preparation of serial drivers

2020
BPF support for RT
migration control and high-
mem cleanup, seqcount
rework, in_interrupt() rework

2022
Networking consolidation,
Further printk() work,
Memory management RT
support

2024
The fi nal printk() changes
RT networking improvements
Enable RT on x86/ARM64

SLOC: Source Lines Of Code

Linux v5.10 - SLOC 20.88M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

Linux v6.1 - SLOC 25.34M
arch
block
crypto
Documentation
drivers
fs
include
init
ipc
kernel
lib
mm
net
security
sound
virt

2021 2023

1. The unknown scope of the overall effort
2. Working against a continuously changing codebase
3. The lack of a dedicated team of experts over a
	 longer period of time

The decision to pursue the project despite the unknown scope
of the overall effort was based on the earlier results from related
academic research projects and the initial proof of concept imple-
mentation. These results demonstrated that the concept was fea-
sible. Assessing the over-all effort was impossible, but considered a
manageable risk if an appropriate engineering approach was found.

The rate of changes in the Linux kernel is enormous. About 1.2
million changes have been applied to the Linux kernel in the
past twenty years. That’s on average ~60,000 changes per year,
~165 changes per calendar day or ~6.9 changes per hour. The rate
per hour increased by a factor of ~2.7 over that time period. The
average growth rate of the Linux kernel code base in that time-
frame is about 10% per year.

The average of ~2.7 changes per hour in 2004 and a 10% growth
rate might have been reason enough to abandon the project and
resort to the Dual-Kernel approach or start a dedicated Real-Time
project from scratch. Neither one of these alternatives was con-
sidered attractive. The Dual-Kernel approach would have lost the
advantage of the consolidated programming interface and faced
strong opposition for clean integration as expressed by various
kernel maintainers. The main objection was that the inclusion of
the necessary Real-Time hooks would not benefit the kernel itself,
but add additional maintenance costs. Starting a new Real-Time
kernel project from scratch was not a viable option either. The
effort to reimplement a kernel on par with the Linux kernel was
estimated to require about 4,500 man years in a study published
by David A. Wheeler in 2004.

24

Contrary to that, the In-Kernel approach allowed leveraging the
broad and increasing hardware support, infrastructure like the
network stack and the ongoing scalability efforts. This was the
decisive factor to pursue the goal of bringing Real-Time capa-
bilities to the Linux kernel. Again, the assumption was that the
change and growth rate are manageable, if an appropriate engi-
neering approach could be determined.

The lack of a dedicated team of experts committed to the project
over a longer period of time was considered as well. Though it
seemed irrelevant at the time, because the initial interest and par-
ticipation did not indicate that this would become an issue.

So the developers accepted the challenge in the spirit of Nelson
Mandela:

	 It always seems impossible until it‘s done.

Pragmatic evolution

If the Real-Time developers would have started with a full design
specification for Preempt-RT, the project would not even have
reached the prototype stage by now. The developers chose the
approach of pragmatic evolution instead. Pragmatic evolution
continuously refines both the engineering process and the imple-
mentation in a rigorous feedback cycle.

The process started with systematic analysis to provide a fine
grained inventory of issues which needed to be addressed. While
many of these issues were interrelated, the breakdown allowed
the work to be split up into manageable subtasks. This enabled
engineers to work in parallel and integrate the results continuously.
The analysis had to be refined regularly to take the accomplished
work and the concurrently ongoing evolution of the upstream ker-
nel into account.

25

The ability to refine the process and the course taken turned out
to be beneficial right from the start. The Real-Time changes result-
ed in a different run-time behavior of the Linux kernel exposing
a rather large amount of latent bugs in the existing kernel code
base. A latent bug is an existing error that has yet not caused a
failure because the exact condition to trigger it was never fulfilled.
The effort required to analyze and address these bugs was beyond
the capacity of the developer team. This unexpected outcome was
addressed by resorting to tooling and run-time analysis, which
became another crucial part of the overall approach.

Adding tooling and run-time analysis to expose latent problems
during development and testing into the upstream kernel was
mostly uncontroversial because it provided an immediate benefit,
independent of the Real-Time effort. The upstream integration
of these tools reduced the efforts for the Real-Time developers to
analyze and address the problems significantly. Addressing the
problems found by the tools shifted to the upstream develop-
ers and the relevant experts of the affected code. With the larg-
er exposure in the upstream kernel, the tools had to be refined
and adjusted, but all of the tools became indispensable for kernel
development.

Keeping up with the concurrent changes and the continuous
growth of the upstream kernel code base turned out to be less
problematic than it looked at first sight. One significant aspect
is that the tools identify problematic changes for the most part,
before they reach the upstream kernel. The other aspect is early
integration. The fine grained subtasks were refined over time in
the out of tree Preempt-RT patch. The regular releases of the patch
set provided sufficient testing to gain confidence in the combined
outcome. Functional changes were systematically separated from
preparatory changes. Preparatory changes included consolidation
of duplicated code, encapsulation of code constructs into better

26

abstractions and interfaces. These preparatory changes did not
change the functionality or the behavior of the upstream kernel.
After they reached the point of stabilization, these cleanups were
integrated upstream.

The upstreaming of the cleanups ensured that new code used the
new mechanisms. This allowed the Real-time developers to focus
on modifying these new abstractions and interfaces instead of
chasing problematic code constructs across the code base.

A similar approach was taken for infrastructure replacements. The
new infrastructure was carefully designed to utilize the required
parts of the existing infrastructure first. This allowed the introduc-
tion of a new control mechanism without changing any other code.
Once the new infrastructure was in place, the code utilizing the
original infrastructure was converted over to the new mechanism
step by step. After the conversion of the codebase was complete,
the obsolete parts of the original infrastructure were removed.

Over the years the process was continuously refined and expanded
by reflection, adopting new tools and learning from other
efforts. The design and implementation details went through
corresponding refinement cycles. New ideas were prototyped to
study the feasibility. Revisiting the drawing board more than once
was a regular consequence of these studies. Once the design
settled several rounds of refinements were required, first in the
Real-Time tree, and then again on upstream submission.

The engineering approach of pragmatic evolution was successful,
but not sufficient on its own. It required a great deal of persever-
ance along with it as Albert Einstein put it aptly:

It‘s not that I‘m so smart, it‘s just that I stay with 		
problems longer.

27

Criticism

From the outset, the Preempt-RT project was met with criti-
cism from parts of the academic Real-Time research community,
because it pragmatically sets aside established academic theories
in favor of exploring solutions that held up in real-world scenarios.
This was necessary as many of the Real-Time theories were estab-
lished in idealized ”clean room” environments, and did not account
for the reality of complex multiprocessor systems and the require-
ments of today’s Real-Time applications.

Victor Yodaiken, the creator of the Dual-Kernel RTLinux project,
criticized the Preempt-RT project by saying:

My opinion has always been that the Linux-RT project
was based on an unfixable engineering error.

It‘s unclear whether the ”unfixable error” is the monolithic design
of the Linux kernel itself or the pragmatic approach to violate
established Real-Time theories. Nevertheless, this so-called unfixable
engineering error powers the most demanding Real-Time applica-
tions in the world.

Acknowledgements

The Linux Real-Time community and the Linutronix Real-Time
team are deeply grateful to everyone who contributed patches,
ideas, bug reports, testing and documentation to this effort.

We extend our thanks for the support we received in the past
twenty years from developers, companies and organizations that
supported and funded this incredible journey.

The Linux Real-Time community has thrived for 25 years and we
eagerly anticipate celebrating the 50-year anniversary!

28

Retrospectives
My Linux RT adventure

Roberto Bucher, June 26, 2024

In the year 2000, I found myself in a rather unusual situation. After
a nasty motorcycle accident, I was stuck in bed for what felt like an
eternity. Bored out of my mind and tired of watching daytime TV,
I decided to dive into something new and exciting. That’s when I
stumbled upon the fascinating world of Linux Real-Time (RT) variants.

With plenty of time on my hands, I dug into the details of RT
Linux and Linux RTAI. After much pondering and a bit of a coin flip,
I chose Linux RTAI. Why? Well, it didn’t hurt that Milan, where RTAI
was being developed, was just ahop, skip, and a jump away from
my home in Lugano.

My first big project? Creating a kernel module from Matlab/Simulink.
I remember the thrill of typing ”insmod” and watching my crea-
tion spring to life in the kernel space. It was like magic, only with
more code and fewer rabbits.

In 2003, I hit the jackpot when SUPSI offered me a sabbatical
semester in Milan. I joined Paolo Mantegazza’s team, and suddenly
I was like a kid in a candy store, but instead of sweets, I was sur-
rounded by code and brilliant minds. My mission? To work on
code generation for Linux RTAI (RTAILab), using block diagrams
from Scilab/Scicos. It was like building intricate Lego structures,
only way cooler.

For the next few years, I lived and breathed RTAI. My colleagues
joked that I should have named my dogs ”RTAI” and ”Scilab”
given how often I mentioned them. But then came 2006, and with
it, the grand unveiling of Preempt-RT at the RTWLS in Lanzhou.
It was like being hit by a lightning bolt of innovation. The room

29

buzzed with excitement, and I could almost hear the collective
”wow” as the possibilities unfolded before us.

That moment was a game-changer. Preempt-RT was poised to
revolutionize everything we knew about real-time Linux systems.
From then on, I shifted my focus to automatic code generation,
eventually developing my own tool under Python, called pysim-
Coder. My journey with Linux RT had been a wild ride from con-
valescence to cutting edge developments, filled with code, cama‑
raderie, and a fair share of geeky excitement. And so, the adven-
ture continues, one line of code at a time.

My journey towards Real-Time Linux

Peter Wurmsdobler, July 2024

While I was working on my PhD in control theory, MATLAB used
to be the preferred tool for all my numerical issues; I even did my
accounting in MATLAB. At that time I merely had a peak into C and
proclaimed: I will never ever write software in such a language;
I prefer the pristine world of simulation where deterministic tim-
ing of discrete time control systems is not a worry and always per-
fect. And if not, then The Mathwork’s Real-Time Workshop will
oblige, or Nicholas McGuire who would implement my algorithms
on a DSP. Soon I had to revisit my position.

After my PhD I moved to France where I had to build a machine
controlled by a computer running MS-DOS, an Intel 486 based PC
with a DAQ card. The machine’s system design was not an issue,
nor the mechanical or the electronic design, but the control soft-
ware was. Since there was no budget for The Mathwork’s fancy
tools, needed to found an alternative solution. Nicholas helped me
exploring options, Linux, in particular Real-Time Linux; so I joined
the RTL mailing list where I found people to be very helpful. Paolo
Montegazza for instance engaged in a productive discussion on
the software design using real-time threads, interrupt handlers

30

and what not. At some point, however, he said: Peter, I think now
it is time to stop talking and start getting your hands into C pro-
gramming.

So I went to Paris, bought a book on C-programming, as well
as books on operating systems, then installed SuSE and tried
to understand more about Linux. To further my understanding,
I travelled to Basel to see Tomek Motylewski and received a crash
course on kernels, interrupt handlers and all the gory details of
the PC architecture. After that I was ready to write some C pro-
grammes and kernel modules for my DAQ card; following a work
visit from Tomek, I had a working solution with a user space pro-
gram, a kernel module with a couple of RTLinux threads, some
shared memory and an interrupt handler to churn out and record
digital signals at a few kHz. this was the result of cooperation, sup-
port from a community and Nicholas (who remained my lifeline
all along).

For me, having become a C programmer despite my initial reticence,
there was only one snag: if my product depends on a favour
of real-time Linux, I need some sort of guarantee that the interface
remains stable and supported as well as its performance deter-
ministic. Yet, on the RTL mailing list there was so much division,
and discussion about the details which I neither understood nor
cared much about. Therefore, Nicholas and I started talking about
the urgent need for some kind of gathering that brings people
together to reach some consensus and to define some stable pro-
gramming interface. The only problem was some kind of reserva-
tion in participation by potential candidates from the mailing list
upon asking them in direct messages about their interest.

An incentive was needed and some seed money. I borrowed
$10k from my father and offered some compensation for partic-
ipant’s travel expenditure on a first-come-first-served basis. With
a few people having taken the bait, names started to appear

31

on the attendee’s list of the soon created web site; hence more
participants signed up for the First Real-Time Linux Workshop
to be held in Vienna in 1999. Nicholas later got the money back
through a government grant as his alter ego, Der.Herr@Hofr.at,
a risky nod to Austrian’s imperial past, showing Austrian’s pro-
pensity for military, academic or aristocratic titles). We could
repay my father in full after a successful seminal workshop.

With all the support received from the real-time Linux community,
I felt I would like to give something back. Since I was not able
or capable to contribute much code to the kernel development
myself, I have tried to help by organising workshops for a few
years, the Real-Time Linux Workshop. I do hope that these work-
shops had an effect:

First, it was lovely to meet people from the mailing list in person.
Second, meeting in person helps deepening the sense of
community and making the building of consensus easier. Last
but not least, these workshops were at the beginning of the wider
free and open source movement, the revenge of the nerds.

LWN.net‘s view on the Real-Time history

Jonathan Corbet, August 2024

The Linux kernel first made an appearance in late 1991; interest
in real-time uses of Linux followed not long after. By the time
that LWN was just getting off the ground in early 1998, the first
RT-Linux patch set was aiming for a stable release.

Decades later, we might just be about to finish the job of provid-
ing real-time response in a stock Linux system.

The early developers working on real-time Linux (prior to the
real-time preemption work) were not the most agreeable folks,
but they all seemed to agree on one fundamental point: they did
not believe that Linux itself would ever be able to operate as a

32

real-time kernel. So the approaches favored at that time worked
by pushing Linux out of the way, displacing it as the true kernel
of the system and, instead, running it as a low-priority process
under a minimal, non-Linux kernel. RTLinux took that approach
(and even patented it), and RTAI followed with a variation on it,
and one of the classic early Linux flame wars was launched.

When the first Real-Time Linux Workshop was announced to
be held in Vienna in December 1999 , an explicit goal was to get
the RTLinux and RTAI developers to treat each other as human
beings and cooperate toward a useful real-time solution. Optimism
never dies, it seems.

Some years went by without a lot of apparent progress, but much
was happening behind the scenes. By late 2004, developers were
increasingly tired of the RTLinux and RTAI camps and becoming
more interested in incorporating real-time capability directly into
Linux itself.

Thus there was a real-time patch set from Sven-Thorsten Dietrich,
preemptible mutexes from Arnd C. Heursch, Dirk Grambow, Dirk
Roedel, and Helmut Rzehak, the real-time security module from
Torben Hohn and Jack O‘Quin, the mmlinux work from Bill Huey,
and a number of other initiatives.

It was unclear which, if any, of these initiatives would succeed, but
the question was soon rendered moot. As often happened in that
era, a much better implementation of the ideas contained in those
patch sets emerged fully formed from Ingo Molnar‘s head after
two days of meditation. Thus, on October 11, 2004, the real-time
preemption patch set first hit the mailing lists. Ingo intended for
this work to go upstream from the beginning:

I believe the basic concept is sound and inclusion is
manageable and desirable.

	

33

Optimism truly never dies. But, in truth, (almost all of) this work has
found its way into the mainline kernel. The fact that it has taken
two decades is a reflection of how difficult that task really was.

The difficulty here had two distinct aspects. One is the sheer chal-
lenge of modifying a general-purpose kernel with tens of millions
of lines of code to be able to provide deterministic response times;
there were many hard problems that had to be solved to get to
that point. The other challenge was just as daunting, though: this
work had to be integrated into the kernel in a way that did not
degrade its operation for non-real-time workloads. Indeed, to jus-
tify the extra complexity that the real-time work brought, it often
had to make things better for all workloads, despite the inherent
trade-offs that must be made when prioritizing response time or
throughput.

History shows that many developers give up when faced with
that sort of task, but that is not what happened here. Over years,
the real-time work did indeed make Linux better for all users. It
brought us the lockdep locking checker, a reworked timer sub-
system, robust futexes, the generic interrupt-handling layer, pri-
ority inheritance, dynamic tick support, the deadline scheduler,
the lockless slab allocator, a reworked CPU hotplug subsystem,
the runtime verification tools, a more robust console-logging sub-
system, and far more. Each of these features has furthered the
real-time project, but also improved the kernel as a whole. As
Linus Torvalds described this process:

The RT people have actually been pretty good at slipping
their stuff in, in small increments, and always with good rea-
sons for why they aren‘t crazy.

Now, 20 years after it began, the real-time preemption work might
actually be reaching its conclusion. It has already been deployed
in countless systems, so the merging of the final patches will be
a nearly anticlimactic ending. This state of affairs is a testament

34

to two decades of focused, determined work from developers
who were just as opinionated as the early real-time folks, but who
were able to work productively with the rest of the community
anyway.

Back in 2005, Ingo, perhaps foreseeing this outcome, suggest-
ed that the ending of the real-time preemption work would look
like this:

So I‘m afraid nothing radical will happen anywhere. Maybe
we can have one final flamewar-party in the end when the
.config options are about to be added, just for nostalgia, ok?

RTLinux retrospective

Victor Yodaiken, Austin Texas, July 4 2014, vy1@e27182.com

RTLinux [3, 1, 5, 4] was a minimal real-time kernel that ran Linux
as fully preemptible thread. Essentially Linux was the idle task for
the real-time kernel. Later variants offered a BSD option in place
of Linux. The system was intended for hard real-time with non-
negotiable timing requirements.

A typical application involved a number of realtime threads
collecting data and controlling a device such as a robot or in-
strument system, streaming data to Linux processes that would
analyze, store, and display the data, and accepting control param-
eters back from the non-real-time code. Communication between
real-time and non-real-time environments used shared memory
and specialized pipes that were non-blocking on the realtime end.

Hard real-time capability allowed for a wide range of applications
including security[6].

The original design was for systems with one or a few cores and
the system relied on a novel lightweight virtualization of Linux
interrupt controls[2] to keep Linux from delaying real-time code.

35

On 1990s commodity computers worst case latency was in the
low microseconds. Later versions as cores became more avail‑
able used a form of processor reservation and had significantly
better latency.

The real-time kernel was optimized to limit worst case latency,
particularly for thread scheduling, interrupts, and I/O. General pur-
pose operating systems get many performance advantages from
optimizing the common case. The dual kernel design allowed
each kernel to be optimized for its most important performance
metric. Uni-kernel real-time systems require an extensive and
ongoing effort to compromise these two goals, to limit lock inter-
vals and to make sure real-time tasks can’t be blocked for too long
by non-real-time code.

RTLinux was originally an open source project. A commercial
version was added in the early 2000s and was sold to WindRiver
Systems in 2007. At the time of the sale, we expected (incorrectly)
that that multi-core computers made it too easy to produce com-
peting systems using some variant of processor reservation for
the real-time kernel.

References
[1] BARABANOV, M., and YODAIKEN, V. Real-time linux. Linux journal (February 1997).
[2] YODAIKEN, V. Adding real-time support to general purpose operating systems.
US Patents and Trademarks Office, US-5995745-A, November, 1999.
[3] YODAIKEN, V. Cheap operating systems research. In Proceedings of the First Con-
ference on Freely Redistributable Systems (Cambridge MA, February 1996).
[4] YODAIKEN, V. The rtlinux manifesto. In Proceedings of the 5th Annual Linux Expo
(Raleigh, North Carolina, May 1999), pp. 187–197.
[5] YODAIKEN, V., and BARABANOV, M. Real-time linux. In Invited Talks: USENIX Winter
Technical Conference (Anaheim, CA, Jan. 1997).
[6] YODAIKEN, V., and DOUGAN, C. Active semantically aware hard real-time security
hypervisors. In Proceedings of the 4th Annual Workshop on Cyber Security and Infor-
mation Intelligence Research: Developing Strategies to Meet the Cyber Security and
Information Intelligence Challenges Ahead (New York, NY, USA, 2008), CSIIRW ’08,
Association for Computing Machinery.

36

Real-Time quotes
Linus Torvalds, 2002
	 Use a microkernel for the realtime stuff and be done with it!

Linus Torvalds, 2004
	 Real-time people are totally crazy!

Doug Niehaus, 2004
	 Real-time is not as fast as possible.
	 Real-time is as fast as specified.

Linus Torvalds, 2005
	 Friends, don’t let friends use priority inheritance!

Steven Rostedt, May 2005
	 This really boils down to the terminology of hard and soft.

Because, what I think of soft-RT is not as good as what the
preempt-RT patch does. You need more too it. Probably,
what I was talking about is diamond hard, and Ingo‘s RT
patch is metal hard. PREEMPT is just wood hard and

	 not PREEMPT is plastic hard. Leaving MS WINDOWS as
feather hard.

	  	Bill Huey
		 Notating it in terms of Tofu firmness would have been
		 more comforting.
		
		  Steven Rostedt
			 Actually, since my wife is Italian, I should have used the
			 hardness of spaghetti as it cooks. That way I could call
			 MS WINDOWS an over cooked noodle!

37

Linus Torvalds, 2006
	 Controlling a laser with Linux is crazy, but everyone in this room

is crazy in his own way. So if you want to use Linux to control an
industrial welding laser, I have no problem with your using

	 Preempt-RT.

Jonathan Corbet, Jan. 2008
	 The merging of the realtime Linux tree will be substantially

complete by the end of the year.

	  Jonathan Corbet, Dec. 2008
		 Your editor should know by now that expecting deterministic

 	 merge times for realtime patches is a sure path to disap-
		 pointment; latencies in this area are always higher than 		

	 one would like.
	
Jonathan Corbet, Jan. 2009
	 The realtime patch set will be mostly merged by the end of the
	 year. It really has to happen this time. What could possibly go
	 wrong?

	  Jonathan Corbet, Sep. 2009
		 Significantly, nobody questioned the overall value of
 		 merging the realtime code into the mainline. Instead, some
 		 of the other discussions have made it clear that there are a
 		 lot of users for this functionality and that it is needed. So this
 		 merger will eventually happen, but your editor has learned
 		 better than to try to predict when.
	
Linus Torvalds, 2010
	 And yeah, I still think the hard-RT people are mostly crazy.

38

Jake Edge, Apr. 2011
	 It is obvious that Gleixner is tired of being asked for a roadmap

for the realtime patches. Typically it isn‘t engineers working on
devices or other parts of the kernel who ask for it, but is, in-
stead, their managers who are looking for such a thing. There
are several reasons why there is no roadmap, starting with the
fact that kernel developers don‘t
use PowerPoint. More seriously,
though, the realtime developers
are making their own road into
the kernel, so they are looking for
a road to follow themselves. But,
so that it could no longer be said
that he hadn‘t shown a roadmap,
Gleixner presented one (see to the

	 right) to much laughter.

Thomas Gleixner, 2014
	 The most intriguing idea so far was to jump on the momentum

of the most hilarious crowd funding nonsense:

	 https://www.kickstarter.com/projects/324283889/potato-salad

	 So in consequence we might turn RT into a crowdfunded
nonsense project which serves the purpose of controlling the
potato-salad machine to make sure that Zack Danger Brown
can deliver all the potato salad people have pledged for.

Jake Edge, Oct. 2017
	 Gleixner has presented various roadmaps for the realtime

patch set over the years. This year‘s edition was textual: ”Due to
the evolutionary nature of Linux the roadmap will be published
after the fact, but it will be a very precise roadmap.“ As with the
others, this roadmap gives some insight into Gleixner‘s feelings
about regularly being asked to provide one.

39

Jake Edge, Oct. 2017
	 For many years, Gleixner worked on the project as something

of a hobby, but it is ”much more fun to get paid for things“,
he said.

Peter Zijlstra, 2020
	 Right, so I‘m concerned. migrate_disable() wrecks pretty much

all Real-Time scheduler theory we have, and PREEMPT_RT
bringing it in is somewhat ironic.

	  Thomas Gleixner
		 It‘s even more ironic that the approach of Preempt-RT
		 has been ‚pragmatic ignorance of theory‘ from the very
		 beginning and despite violating all theories it still works.

	  Linus Torvalds:
		 So either throw the broken theory away, or live with it.
 		 Theory that doesn‘t match reality isn‘t theory, it‘s religion.
		 There are few things more futile than railing against reality,
		 Peter.

		  Peter Zijlstra:
			 But, but, my windmills! :-)

			  Thomas Gleixner:
				 At least you have windmills where you live so you

			 can pull off the real Don Quixote while other people 		
			 have to find substitutes :)

40

The RTLWS archives
The archive of the Real-Time Linux Workshop proceedings is a
rich source of information about the history of Real-Time Linux
and the various approaches taken. The full archive is available at
https://archive.kernel.org/rtlws-archive/

The following excerpts give some insight in to the history and
hopefully inspire the interested reader to dig into the archives.

NMT-RTL

Michael Barabanov - RTLWS 1999

RTLinux is the hard realtime variant of Linux that makes it possible
to control robots, data acquisition systems, manufacturing plants,
and other time-sensitive instruments and machines. Version 1 of
RTLinux was designed to run on low end x86 based computers
and provided a spartan API and programming environment.
Version 2 RTLinux is a complete rewrite, designed support sym‑
metric multiprocessing, to run on a larger range of systems, and
with extensions for ease of use.

In this paper, we will discuss the new system and its API with par-
ticular attention to the problems of increasing ease of use and
adherence to standards, without performance compromise.

RED-Linux project

Yu-Chung Wang – RTLWS 1999

As the RED-Linux project is still in a very early stage, it is difficult
for us to predict what will happen next. In a way it all depends on
how much demand and help we can get from people like you.
Moreover, it is our hope that many of you will find this project to
be meaningful and interesting enough for your active participa-
tion. Your suggestion and comment will be highly appreciated.

41

DIAPM-RTAI for Linux: Whys, Whats and Hows

Paolo Mantegazza - RTLWS 1999

• 	 NMT-RTL patch confirmed that 2.0.xx was not mature for
RTHAl/RTAI;

• 	 its simple scheduler, declared as primitive by NMT-RTL
developers, was instead immediately recognized as what we
needed, because it was very close to that of DIAPM-RTOS;

• 	 So we could easily go to ”the old loved DOS way” and easily
port all what we had under DOS (DI APM-RTOS almost
unchanged, TSRs became LINUX modules);

• 	 But the first tests were a disaster
• 	 That’s why the DIAPM-RTAI variant was born

RT Linux works at the finest temporal granularity (1 microsec), but
places RT computations in the context of the lowest level exec-
utive, not as part of Linux. KURT provides coarser time granular-
ity (10s micro-sec), and is subject to scheduling distortions (10s
micro-sec), but places the real-time computations in the context of
Linux; both kernel and user modes. Linux/RK deals more with the
”resource kernel“ interface for describing resource sets and a loca‑
ting their use to user level computations. The papers on Linux/RK
claim roughly the same temporal granularity as KURT, but only
report experiments with granularity at the 100s of milli-sec level.

Linux/RK - The resource kernel

Ragunathan (Raj) Rajkumar - RTLWS 1999

A resource kernel is defined to be one which provides timely,
guaranteed and protected access to system resources. The
resource kernel allows applications to specify only their resource
demands leaving the kernel to satisfy those demands using hidden
resource management schemes. This separation of resource
specification from resource management allows OS-subsystem-

42

specific customization by extending, optimizing or even replacing
resource management schemes. As a result, this resource-centric
approach can be implemented with any of several different
resource management schemes. The resource kernel gets its
name from its resource-centricity and its ability to

• 	 apply a uniform resource model for dynamic sharing of
differenresource types,

• 	 take resource usage specifications from applications,
• 	 guarantee resource allocations at admission time,
•	 schedule contending activities on a resource based

on a well-defined scheme, and
• 	 ensure timeliness by dynamically monitoring and enforcing

actual resource usage.

In summary, a resource kernel provides resource-centric services
which, in turn, can be used to satisfy end-to-end QoS require-
ments. Generally, a QoS manager sitting on top of a resource
kernel can make adaptive adjustments to resources allocated to
applications.

RT-Mach is a resource kernel. See our recent work in the recent
publications section on Processor Reservation and Disk Reservation.

The XENOMAI Project - Implementing a RTOS emulation
framework on GNU/Linux

Philippe Gerum - RTLWS 2001

Xenomai is a GNU/Linux-based framework which aims at being
a foundation for a set of legacy RTOS API emulators running
on top of a host software architecture, such as RTAI when hard
real-time support is required. Generally speaking, this project aims
at helping application designers relying on legacy RTOS to move
as smoothly as possible to a GNU/Linux-based execution environ-
ment, without having to rewrite their applications entirely.

43

This paper discusses the motivations for proposing this frame-
work, the general observations concerning the legacy RTOS
directing this project, and some in-depth details about its under-
going implementation.

RTLinux with address spaces

Frank Mehnert, Michael Hohmuth, Sebastian Schonberg,
Hermann Härtig – RTLWS 2001

In this paper, we determine the cost of a separate-space system
relative to that of a shared-space system. We compare these par-
ticular two types of systems because we feel that separate-space
systems lend themselves for the largest number applications, and
we expect the largest performance over-head relative to shared-
space systems.

For our evaluation, we used RTLinux from the shared-space sys-
tems category, and L4RTL, a reimplementation of the RTLinux
API as a separate-space system based on a real-time microkernel
and a user-level Linux server. We observed RTLinux‘s worst-case
response time to be much higher than about 15 us on a gener-
ic x86 PC claimed by the systems authors. In our experiments,
RTLinux worst-case interrupt latency was 68 us. The worst case for
L4RTL was 85 us.

We found that the cost induced by address-space switches to
real-time applications does not significantly distort the predicta-
bility of the system. In general, most of the worst-case overhead
we observed must be attributed to implementation artifacts of
the microkernel we used, not to the use of address spaces.

44

Use of cookies in Real-Time system development

M. Gleixner, M. M Guire – RTLWS 2009

While typical scientific works have focused on the technical
aspects of real-time development and real-time systems this
paper will focus on the caloric requirements that profoundly
can impact development and notably scientific dissemination.
Though the use of cookies and respective protocols in computer
science are well documented we will not cover security aspects,
notably related to excessive accumulative effects of consuming
large amounts of cookies, rather we will focus on their creation,
deployment, assessment and finally their consumption and the
positive impact on the real-time Linux community we were able
to observe.

45

46

Obituaries

Doug Niehaus

Doug Niehaus was an Associate Pro-
fessor of computer science at Kansas
University. He unexpectedly passed
away in 2012 at the age of 54.

Doug has to be considered one of the
pioneers of real-time Linux. His efforts
of making Linux a venerable choice
for real-time systems reach back into
the mid 1990s. While his KURT (Kansas
University Real-Time) project did not

 attract a large community, his influ‑
ence on the Linux kernel and the
Linux Real-Time Preempt-RT project

reaches much farther than most people are aware of.

His research provided the initial proof that the Linux kernel could
be modified to provide Real-Time properties laid the ground for
two decades of work in the kernel community. His input on topics
like high resolution timers, kernel instrumentation and schedul-
ing has left its traces in the design of solutions which have found
their way into the Linux kernel. His proposal to create a schedul-
ing policy agnostic mechanism to prevent priorty inversion is still
considered to be the correct approach, but it left developers and
researchers puzzled over the implementation details for 15 years.
Doug’s direct and indirect influence on the Linux (Real-time)
development is definitely worth to be mentioned and preserved
in the Linux history book.

Doug’s dry sense of humour, his language skills and his broad
interest outside of computer science ranging from philosophy,

47

fine arts, music and literature to more prosaic topics like cooking,
dogs and hiking were always a guarantee for lively and interesting
conversations, which could get opinionated and heated as well.
His open-minded, deeply humanistic, but also vulnerable charac-
ter, which made it a pleasure and from time to time laborious to
work and communicate with him.

The academic and the Linux Real-Time communities lost a bril-
liant mind and a friend, but his work left traces, which will be with
us for ever.

48

49

Daniel Bristot de Oliviera

Daniel was a computer scientist with
a focus on Real-Time systems and
scheduling theory who is well recog-
nized in the academic and the Linux
kernel community. Daniel died pre-
maturely at the age of 37 in June 2024.

His truly outstanding ability to apply
theoretical Real-Time concepts to real-
world problems in the industry has
been instrumental in driving the
success of Linux and its adoption in
real-time critical application spaces.

Daniel was creative and passionate
about computer science. He earned a joint PhD from Univer-
sidade Federal de Santa Catarina in Brazil and Scuola Superiore
Sant’Anna in Italy, with a research thesis focusing on Automata-
based Formal Analysis and Verification of the Real-Time Linux
Kernel. His work was an exemplary piece of research, combin-
ing theoretical research arguments with a real implementation
of a kernel-level mechanism. It models the behavior of complex
parts of the Linux kernel, such as the process scheduler, with
a finite-state machine and uses minimum-overhead run-time
verification to validate the coherence of the kernel’s run-time
behavior and the theoretical model.

While he pursued his ideas and visions with great perseverance,
he was always open for discussion, criticism, and other people’s
ideas. His honesty, his modesty, and his wicked sense of humor
made it a pleasure to work with him. His wide interests outside of
technology and his exceptional social skills made it easy to con-
nect with him which resulted in many deep friendships reaching
beyond the scope of work.

The Brazilian lyricist Paolo Coelho wrote:

Never. We never lose our loved ones. They accompany us;
they don’t disappear from our lives. We are merely in
different rooms.

The academic and Linux kernel communities will always be
accompanied by Daniel and by the traces he left in his work and
in our hearts.

50

About Linutronix
Linutronix GmbH is one of the leading service providers for all
aspects of Linux in an industrial environment. Ranging from board
support package, to the development environment and browser
application, to consultation services for ongoing projects, we offer
the full range of support from one single source.

However, all-in-one solutions are only a part of what we can offer.
We also provide support for individual aspects of your projects.

We are committed to actively pariticipate in the development of
the Linux kernel and other Free and Open Source Software (FOSS)
projects. Our team has significantly contributed to Preempt-RT, to
the Linux kernel in general and to other FOSS projects. We support
our team members, who have maintainer roles in FOSS projects,
so they can fulfil their important duties within paid hours.

Therefore, the Real-Time Linux Collaborative Project contracted us
to advance the integration of Preempt-RT into the mainline Linux
kernel.

51

52

Imprint
Legal disclosure:
Information in accordance with §5 TMG
(German Telecommunications Service Law):

Linutronix GmbH
Bahnhofstrasse 3
88690 Uhldingen-Muehlhofen / Germany

Managing directors:
Heinz Egger, Thomas Gleixner, Sean Fennelly,
Jeffrey Schneiderman, Tiffany Silva

Contact information:
Telephone: +49 7556 25 999 0
Fax: +49 7556 25 999 99
E-Mail: info@linutronix.de

Register entry:
Registration in the commercial register (Handelsregister).
Register court: District Court of Freiburg i.Br.
Register number: HRB 700 806

VAT identification number:
VAT identification number in accordance with §27a of the
German VAT Act (Umsatzsteuergesetz): DE252739476

Design and layout:
CHRISKNEIFEL · Kommunikation
Marktplatz 10, 87616 Marktoberdorf / Germany
Telephone: +49 8342 8956525
E-Mail: kontakt@chriskneifel.de
www.chriskneifel.de

53

