
Yocto or Debian
Build system for Embedded Devices

White Paper

E.L.B.E. is not affiliated with Debian (www.debian.org) Debian is a registered trademark owned by SPI (www.spi-inc.org)

Page -2 -Yocto or Debian

Embedded developers are often faced with the task of ha-
ving to commission new hardware for a new project. The
task to be solved consists essentially of porting the boot-
loader, operating system and third-party software com-
ponents to the new hardware. The way this is carried out
should be

 reproducible
 maintainable in the sense of updatability in the later

 product life cycle
 secure in terms of data security
 and without problems related to the used CPU

 architecture.

Let’s first clarify the term „Linux“ at this point. Linux is,
strictly speaking, an operating system kernel. The combina-
tion of (Linux) kernel and all the other software like drivers,
daemons, utilities (i.e. the root file system (rfs)), bootloader
etc. tends to be called Linux, but should be called Linux dis-
tribution. In reference to a specific hardware platform, this
is often referred to as a Board Support Package (BSP).

Fig. 1 shows the typical structure of an embedded Linux
platform as described above.

To get to a platform like the one shown here, but also to
develop relating application programs (userland code), you
need a so-called toolchain, which is executed on a develop-
ment computer. A toolchain is a systematic collection of
programs that are used to create a product (usually ano-
ther program or a system of programs). The name explains
itself as the tool programs are usually used one by one in
the form of a chain.

A simple toolbox for software development includes a text
editor for creating the source code, a compiler, a linker for
creating executable programs, libraries for accessing the
public routines of the operating system, and a debugger.

SDK – a Software Development Kit is a fundamental collec-
tion of necessary components such as compilers, utilities
and information to develop software for an operating sys-
tem. The basis for this is the so-called toolchain. The exact
content of an SDK can differ significantly from case to case,
as it varies in complexity depending on the subject matter.
Usually the kit contains at least the necessary APIs for an
existing system and documentation, which give the devel-
oper information about available interfaces or the general
structure. Some build systems for Linux provide applica-
tion developers with an SDK for easy use.

Executive Summary:
With Yocto, a seemingly de-facto standard for generating (embedded) Linux BSPs has established itself in recent years.
However, you should keep in mind that Yocto is a tool to create your own distribution (for your device). What you notice
first, is the flexibility to quickly make your own adaptations and also to create variants.

In the long run over the life cycle of a device this means that all of the maintenance of security patches has to be done by
the user. The resources required for this can take on considerable proportions and more than just eliminate the apparent
advantages of the initial product launch.

The distributions commonly used in the IT world have still not been accepted in the embedded world for various reasons.
Debian, as for example, actually is suitable for the embedded market because it supports various CPU architectures. The
seemingly lacking flexibility in the configuration of individual software packages (e.g. own translation, own selection of
packages) can be created by additional tools like ELBE. With ELBE a Debian based BSP is at least as flexible and easy to create
as with Yocto. Even better, once a BSP has been created, it can be completely restored to exactly the same version at any
time, thanks to the XML file, which contains all the necessary information.

Due to the Debian sources being permanently maintained, the maintenance of the BSP created in this way can be done
directly with the patches stored there for the individual packages. This significantly reduces the effort for security and bug
fixes.

Although at the beginning of a project seemingly "cheaper" and "faster", a Yocto based approach to creating a BSP over the
lifetime of a product will ultimately be significantly more expensive than creating an identical BSP using Debian packages.

Embedded Linux Plattform

Hardware x86 / ARM / t.b.d.

© Linutronix GmbH 2019

Customer Application / Managed Container

Bootloader

Scheduler IPC Network Memory
splice, read, open, ioctl, mmap, close, exit, …

Linux Security Modules: selinux, tomoyo,
apparmor, smack…

Li
nu

x
Ke

rn
el

Libraries U
se

r
La

nd

Figure 1: Embedded Linux Platform (BSP, Distribution)

Page -3 -Yocto or Debian

How does a developer get a BSP / distri-
bution for the hardware he uses?

There are several different procedures. Apart from the so-
called Build Your Own Linux, you can either use an existing
distribution or create your own.

Let‘s take a look at two common examples of these approa-
ches. Yocto on the one hand is a tool for creating your own
distribution. And Debian on the other hand is a widespread
distribution that is also used as a basis for many other dis-
tributions. Debian itself, however, is not a tool for creating
a distribution.

Let‘s first look at Yocto. Further information can be found at
the following link:

www.yoctoproject.org

Yocto defines itself as follows: The Yocto project is defined as
„an open source collaboration project that provides templa-
tes, tools and methods to help you create custom Linux-based
systems for embedded products regardless of the hardware
architecture.“ It is a collection of recipes, configuration valu-
es, and dependencies used to create a custom Linux runtime
image tailored to your specific needs.

 A typical build process with Yocto looks like this:

In a first step, the required software packages are defined,
then searched on the Internet and then down-loaded to the
development computer / server. The loaded software com-
ponents are cross translated, whereby the configuration(s)
for the compilation process can be specified individually. Af-
ter the compilation, the components are assembled, depen-
ding on the storage medium used there, to an executable
image for the target system. All these processes are cont-
rolled by the so-called „recipes“ of Yocto.

But how does building a distribution / BSP with Debian
work?

Here you have to decide between using Debian as it is or using
a tool like ELBE (Embedded Linux Build System).

Further information about Debian can be found at the fol-
lowing link:

https://www.debian.org/

Further information about ELBE can be found at the following
link:

https://elbe-rfs.org/

Figure 5 shows what a typical „classic“ build based on Debian
may look like.

The user can quickly create a BSP based on binary packages
(available from the Debian Mirror servers) by simply merging
them together. The only way to include a personal configu-
ration here is to replace the Debian kernel package by a self-
compiled kernel.

Debian and customized adaptability

The quickness of achieving a (first) GNP in this way, however,
compromises flexibility. You have to accept the packages in
their binary form just as they are.
To change this and give the user full flexibility about his BSP
while using Debian, Linutronix has developed the tool ELBE
(Embedded Linux Build Environment). With ELBE, a build pro-
cess for a target system appears as shown in Fig. 6.

To put it simple, ELBE allows you to retranslate any compo-
nent, including your own software, and store it as a Debian
package. This happens in a virtual machine and can be done
both natively and crosswise. Native translation solves many
problems that can occur during cross-platform build as a re-
sult of dependencies. The RFS itself can be created for many
different media (SDcard, NAND, network, etc.), regardless of
the method chosen for creation.

Figure 2: Yocto Build Process

© Linutronix GmbH 2019

Internet /
Cloud

RFS Image
Configure

Yocto

Source
Code

Fetch selected
sources

Cross
Compile

Figure 3: Yocto Layer Structure

© Linutronix GmbH 2019

RFS Image
Add package(s)

Debian
Debian
mirror

Fetch pre-built
basic packages Recompile Kernel

Figure 5: Debian Build Process

Packet
Repository

Source
Repository

© Linutronix GmbH 2019

Buildsystem

Vanilla Linux
Long Term Stable

Source
Code

Bootloader

Source
Code

Compile and .deb

Compile and .deb

Compile and .deb

Build Tool

RFS Image

XML
file

3rd.
party &

own
Software

Compile and .deb

Mirror

Figure 6: ELBE Build System - Overview

Page -4 -Yocto or Debian

All important information, configurations etc. are stored in
an XML file. This allows ELBE to easily reproduce the target
image. The XML file in ELBE represents what Yocto calls the
collection of recipes, layers and meta-layers, but more clear-
ly and easily recognizable (no overwriting by later recipes or
layers).

ELBE does give the Debian approach not only the same flexi-
bility and configurability known as the characteristics of the
Yocto approach, but additionally combines this with the ad-
vantages of a maintained distribution.

Maintenance – not only Security

The two approaches differ greatly in this respect. Yocto is,
as mentioned above, not a distribution, but only a tool to
create a distribution. Although there is a new Yocto version
at regular intervals, its contents are not defined. Neither is
there any guarantee that the personal distribution created
with Yocto (my kernel and my RFS) will be completely co-
vered by the new release. And since there is no definition
of what is included in the new release, it can happen that
a buggy software version is actually included in the new
Yocto release, without security patches, etc.

The only remedy here is a manual check to see which com-
ponents have changed in the new Yocto release, whether
all the necessary security patches have been integrated,
and, if this is not the case, do it yourself.
And even if a software, let‘s say a library, contains a required
security fix, it doesn‘t mean that the new library version is

ready to use. Because it may behave differently or an API
might have been changed. All of this has to be checked and
validated by the user.

Again, an intermediate release must be performed manu-
ally, if the approximately 6-month interval between two re-
leases is too long. You would have to search, which software
needs a security patch, search and apply the patch, recover
this process for the entire RFS and then build the new board
support package with Yocto.

Debian is quite a different story. Here the source versions
the packages are built from, are maintained by the respon-
sible maintainer as well as by the Debian Security Team.
Even if the source project is further developed (e.g. a new
version is created), the functional patches are collected by
the maintainer and, if necessary ported back to the source
level of the Debian version. This also applies to any securi-
ty patches. These, too, will be ported back if necessary. So,
you can be assured that over the years the software com-
ponent is up to date and still compatible to the original
version. Particularly with long-running products, this is
an immense (cost) advantage, as further, time-consuming
work on your own application, for instance, can be avoided.

Comparing the two build system approaches

The following chapter contains a (incomplete) list of the
most important points of Yocto and Debian (Elbe) relevant
for a developer.

Task Yocto ELBE (based on Debian)
Compiling Cross translation on the host

Many Open Source packages can be cross-
translated today without much effort re-
garding any dependencies.
Possibly, dependencies to the host system
can be built into the BSP (linking host lib-
raries etc.).

Native or cross translation on the host
Target system is created in a virtual machi-
ne either cross or native (in a Qemu envi-
ronment); translating on the target is no
longer necessary.
The virtual machine decouples the target
system 100% from the host and avoids any
problems with native translation.

Additional packages or features
(Enhancement of functionality)

Customize recipes to create new pa-
ckages. Then install packages through pa-
ckage manager (Yocto supports them) or
create a complete new BSP

Either by Package Manager on the target
(installing the additional functions/pa-
ckages) or by creating a new BSP or by crea-
ting an update image (and subsequently
by updating on the target)

Individual configurations and
customization of features

Each software package comes with its
own recipe and/or Metalayer. This allows
you to define for each package how it is
built.
All changes to configurations in Yocto can
be tracked between two versions.

Using the original (binary) Debian pa-
ckages, you can quickly create a first BSP.
A specific customization of the packages
is not possible.
ELBE allows you to recompile each indivi-
dual package with its own specific confi-
guration (see above).
The configuration is stored in XML, and
changes are traceable. Each build remains
reproducible.

Page -5 -Yocto or Debian

Task Yocto ELBE (based on Debian)
Platform customization Complete platform can be configured and

customized due to recipes and meta-lay-
ers.
Reuse over different hardware platforms
possible (e.g. for x86 and ARM based hard-
ware; here boot loader and kernel confi-
guration must be adapted, with the other
parts a new compilation is sufficient)

Bootloader and kernel must be adapted,
RFS can be reused after recompilation
thanks to multi-arch architecture.

Learning curve Steep, because of
 Meta-Layer concept
 Recipes
 Cross compilation,
 Dependencies of the packages

Straight Debian – quite flat
ELBE - demanding, but not steep
 XML description
 Cross or native compilation
 Build custom Debian packages
 Dependencies of the packages

Reproducibility Quite powerful, especially if the sources
are on a local mirror server
Automatic build possible

Quite powerful, if the sources or binary
packages are on a local mirror server.
Automatic build possible with ELBE

Host Tool Dependency Existing; use of containers reduces this
dependency to the fact that a Linux Do-
cker image must be executable

With ELBE, there is no dependency be-
cause of the virtual machine;

Scalability and Automation Build and test can be automated, regard-
less of the development of recipes and
meta-layers. Their development can be
split among several persons (scalable).

Build and test can be automated; XML
files can be worked on by different per-
sons

License Issue A summary of used licenses can be gene-
rated, also on SPDX basis

A summary of used licenses can be gene-
rated, also on SPDX basis

Testing options No dependence on Yocto No dependency on Debian and/or ELBE

Debugging All Linux features are supported All Linux features are supported

Boot Time Optimization Possible, because each SW package can be
individually configured and compiled; as-
sembly of the target image can be defined
and thus optimized

Possible, because each SW package can be
individually configured and compiled; as-
sembly of the target image can be defined
and thus optimized

RootFile System (RFS) Size Since the packages to be integrated can
be defined individually, the RFS size can be
determined („only what is really needed“).

Since the packages to be integrated can
be defined individually, the RFS size can be
determined („only what is really needed“).

Maintainability (Feature,
Security)

(Almost) no support by Yocto Project ex-
cept the ½ annual releases; to what ex-
tent the own BSP is affected or not has to
be checked in each case.
(Almost) no security support through pat-
ches
Maintenance effort very high

Regular bug and feature fixes by Debian
Project
Regular security patches through Debian
project
Maintenance effort therefore at a mini-
mum

SDK (Toolchain) Will be built Will be built

Are you interested? Would you like to learn
more about our products and solutions?
Simply contact us via telephone or email.

Myrmillonem uel
quemlibet alium per
cussor. L I N UT RO N I X G M B H

Bahnhofstrasse 3 | D-88690 Uhldingen - Mühlhofen
Telefon +49 7556 25 999 0 | Fax +49 7556 25 999 99
sales@linutronix.de | www.linutronix.de

W
P_

20
19

 V
1.

0

Advantages of ELBE
With the use of Debian, the industrial environment now
can benefit from the many advantages in the server and
desktop world. The ELBE build system helps the user to ad-
apt Debian to his application and to keep the build process
reproducible. With ELBE and Debian the advantages are:

 Use of a long-lived technology

 Maintained packages

 Flexibility through the availability of a large number
of packages and through simple integration of new
packages on the target system

 Easy creation of images for different storage media
and boot scenarios

 Easy adaptability and extensibility

 Reproducibility of the build process

 Easily create an SDK

 Easy handling of all license obligations

